## Algebra 2 Semester Exam Reference Sheet

### Slope-intercept form of a linear equation

v = mx + b

where m = slope and b = y-intercept

### Point-slope form of a linear equation

 $y - y_1 = m(x - x_1)$ 

where m = slope and  $(x_1, y_1)$  is a point on the line

### Slope Formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

where m = slope and  $(x_1, y_1)$  and  $(x_2, y_2)$ are points on the line

### **Quadratic Formula**

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where a, b, and c are coefficients in an equation of the form  $ax^2 + bx + c = 0$ 

### **Exponential Growth and Decay**

$$A(t) = a(1+r)^t$$

A(t) = amount after t time periods a = initial amount

r =rate of growth or decay t = number of periods

# Compound Interest: $A = P \left( 1 + \frac{r}{n} \right)^{n}$

Interest Formulas

Continuous Compound Interest:  $A = Pe^{rt}$ A =future value

P = present value

### r =annual interest rate t = time in yearsn =frequency of compounding per year

### **Logarithm Properties**

$$\log_b MN = \log_b M + \log_b N$$

$$\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N$$

$$\log_b M^p = p \log_b M$$

Change of Base Formula

 $\log_b m = \frac{\log_c m}{\log_b h}$ 

# **Arithmetic and Geometric Sequences and Series**

Arithmetic Sequence: 
$$a_n = a_1 + (n-1)d$$

Geometric Sequence:  $a_n = a_1 r^{n-1}$ 

Sum of a Finite Arithmetic Series: 
$$S_n = \frac{n(a_1 + a_n)}{2}$$
 or  $S_n = \frac{1}{2}n[2a_1 + (n-1)d]$ 

r = common ratio

Sum of a Finite Geometric Series: 
$$S_n = \frac{a_1(1-r^n)}{1-r}, \quad r \neq 1$$

Sum of an Infinite Geometric Series: 
$$S_n = \frac{a_1}{1-r}$$
, where  $|r| < 1$ 

$$a_n$$
 = nth term  $a_1 = 1^{st}$  term  $d$  = common difference  $r$  = common

n = number of terms in series

# Conic Sections (Honors Only)

Parabola 
$$y = \frac{1}{2}$$

$$y = \frac{1}{4c}(x-h)^2 + k$$
 or  $x = \frac{1}{4c}(y-k)^2 + h$ 

Circle 
$$(x-h)^2 + (y-k)^2 = r^2$$

Ellipse 
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \quad \text{or} \quad \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Hyperbola 
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \quad \text{or} \quad \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$